top                                                           Ceramics from  KERANOVA  AB

MATERIALS PROPERTIES                                                                   MATERIALS PROPERTIES
Rem.

Unit

Silicon dioxide

Porcelain

Steatite

Cordierite

Glass ceramic

Alumina

 

 

 

Zirconia

 

 

 

 

Magnesia

 

Titania

Aluminium titanate

Aluminium
nitride

Sialon

Silicon nitride

 

 

Silicon carbide

 

Boron carbide

Boron nitride

Titanium diboride

Diamond

Hardmetal

Tool steel

      "Silica", SiO2 Al2O3·SiO2 a.o. MgO·SiO2 2MgO·
· 2Al2O3·
· 5SiO2
Macor ® ~90% Al2O3 ~95% Al2O3 ~100% Al2O3 Al2O3 ZrO2 ZrO2 ZrO2 ZrO2 ZrO2 MgO MgO TiO2 Al2TiO5 AlN Si3N4·
· Al2O3
Si3N4 Si3N4 Si3N4 SiC SiC B4C BN TiB2 C WC,
5-10%Co
0.8% C  
   

 

                ZrO2-
hardened
Partially MgO-stab. Partially CeO2-
stab.
Partially Y2O3-
stab.
Fully CaO stab. Fully Y2O3 stab. Sintered, porous Hot pressed Sintered       Reaction bonded Sintered Hot pressed Reaction bonded Sintered Hot pressed Hot pressed (hexagonal) Sintered Single crystal      
Major constituents   Weight-% >99.5 30-50% Al2O3     46% SiO2, 17% MgO, 16% Al2O3 90 95±1 99,6±0,1 85% Al2O3 95 95 95 95 89±1 99 99     98     95   90±3 % SiC, residual  Si 98,5±0,5 99 96         Major constituents
Designation     "Fused Silica" Alumina porcelain             ZTA Mg-PSZ Ce-PSZ Y-PSZ Ca-FSZ Y-FSZ             RBSN SSN HPSN SiSiC / RBSC SSiC   HPBN         Designation
Density 1 g/cm³ 2,1 ± 0,1 2,7±0,2 2,8±0,2 2,4±0,1 2,52 3,55±0,06 3,73±0,07 3,87±0,04 4,3±0,2 5,70±0,05 6,18±0,03 6,02±0,05 5,2±0,2 5,8±0,1 2,54±0,14 3,52±0,06 3,8±0,3 3,1±0,1 3,25±0,03 3,25±0,01 2,45±0,24 3,24±0,04 3,23±0,07 3,06±0,05 3,11±0,07 2,48±0,02 2,03±0,13 4,46±0,02 3,5 14,7±0,4 7,7±0,2 Density
Open porosity 2 vol-% 4±4 0 0 0,5±0,5 0 0 0 0 0 0 0 0 0 0 24±8 0 0 12±3 0 0 23±7 1±1 0 2±2 0 0 1,4±1,0 0 0 0 0 Open porosity
Average grain size   µm           4 13±11 10±8 4±1 0,5 1,5±0,5 0,6±0,3 36±26 0,4±0,1 or 25±12 70     5,5±0,5 4±1 5±4 2 3±2 0,4±0,1 13±3 1,5±0,7       not applicable 6,4±4,7   Average grain size
                                                                     

   

SiO2

Porcelain

Steatite

Cordierite

Macor

90% Al2O3

95% Al2O3

100% Al2O3

85% Al2O3, ZrO2-hardened

Mg-PSZ

Ce-PSZ

Y-PSZ

Ca-FSZ

Y-FSZ

porous MgO

dense MgO

TiO2

Al2TiO5

AlN

Sialon

RBSN

SSN

HPSN

Si-SiC

SSiC

HPBC

HPBN

TiB2

Diamond

Hardmetal

Tool steel

Mechanical properties     Mechanical properties   Mechanical properties   Mechanical properties   Mechanical properties   Mechanical properties   Mechanical properties   Mechanical properties   Mechanical properties   Mechanical properties   Mechanical properties   Mechanical properties   Mechanical properties   Mechanical properties   Mechanical properties   Mechanical properties   Mechanical properties Mechanical properties
Hardness, Knoop 100g (1000 g) 3 kg/mm² 490 (600),     250 1400 1880±200 2030±260 2340 1780±50   1630±160 1530 1730   600   378 (1200),   (1350), 1510±70 2210±450 2460±330 2880±30 2910±120 18±4 (2920±460)   (1830±230) (775±125) Hardness, Knoop 100g (1000 g)
Hardness, Vickers, 50 g (500 g) 3 kg/mm² (617±85) 800 (630±20) (650), (328±73) 1400 1630±130 (1820±170) (1630), 1290±70 900 1340±100   1500   630±30 (830±114)   (1200±20) (1740±110) 950±147 1500 1880±220 2500±500 2800±430 3330±130 16±3 (3060) 8500±500 1470±130 980 Hardness, Vickers, 50 g (500 g)
Hardness, Rockwell 45N 3   50 60   60 48 78±1 79±1 81±1   77±3   74 68 72±4     70 33   92±1 67±13 89±2 90±1 88 94 94±2       85±3 58±6 Hardness, Rockwell 45N
Tensile strength, 20°C   MPa 69±1 (im- pervious) >50 73±4 51   220 222±30 245±49   401±40     103             416±47 160±40 214 500±90 305 390   25       1170±620 Tensile strength, 20°C
Flexural strength, 3- or 4-pts., 20°C 4 MPa 73±30 105±41 136±9 107±7 106±12 321±26 336±37 341±28 608±207 700±149 581±183 1120±300 189±39 296±73 29±17 180±84 190±78 29±6 331±64 853±116 250±60 680±160 890±130 370±90 480±90 390±80 80±22 310±40   2300±750   Flexural strength, 3- or 4-pts., 20°C
Flexural strength, 3- or 4-pts., 1000°C 4 MPa           103 143±5 200±50   430 (820°C)   320±150           30   690 215±25 600±120 890±40 390±10 430±40   37±21     550   Flexural strength, 3- or 4-pts., 1000°C
Compressive strength, 20°C   MPa >48 (porous) 550±40 703±140 399±71 345 2480 2150±340 2520±530 2650±350 1880±90 1750±250 2130±420 1710 1760±180 55±32     200 1920±300 3480±30 720±160 2580±520 3280±630 1810±540 2720±610 2310±380 155±90 3010±1320   4820±530 1500±500 Compressive strength, 20°C
Elastic (Young's) modulus, E, 20°C.   GPa 53±19 93±11 97±12 104±16 65±1 265±11 310±24 373±26 347±32 195±11 215 202±7 166±6 178±21   295±10 228±52 16±7 303±18 297±16 164±47 296±13 314±4 381±21 413±22 420±42 56±20 540±30 998±38 576±80 215±12 Elastic (Young's) modulus, E, 20°C.
Fracture toughness, K1c, 20°C   MPaV¯m 1,1±0,3       1,5 3,5±0,4 4,5±1,1 4,3±0,8 7,2±3,8 11±2 16±4 9±2   3±2       1 3,7±1,2 7,1±3,0 3,0±0,7 6,9±2,5 5,7±0,6 3,6±0,6 3,9±0,8 3,5±0,5   5   13±9 60±14 Fracture toughness, K1c, 20°C
Fracture energy   J/m² 1 5   5       25   50           1         10     25   25           Fracture energy
Weibull modulus, m, 20°C 5 -             10 18±8 14±5 25±5 18±2 19±5             15 11±2 16±4 16±3 27±9 11±1 11±1 10 19±1         Weibull modulus, m, 20°C
Poisson's ratio, 20°C 6 - 0,21±0,05 0,25   0,25 0,28±0,01 0,26±0,04 0,23±0,02 0,22±0,02 0,24±0,01 0,28±0,04 0,3 0,25±0,04   0,27±0,02   0,29±0,08 0,25 0,19±0,04 0,25 0,26±0,04 0,22±0,04 0,25±0,03 0,27±0,08 0,20±0,03 0,18±0,03 0,19±0,02   0,19±0,01 0,20 0,24±0,03 0,29±0,01 Poisson's ratio, 20°C
Coefficient of friction 7 -         0,14±0,02   0,17 0,15   0,20±0,01 0,18 0,18                 0,1 0,1 0,1 0,08 0,07   0,18   0,1 0,2 0,3 Coefficient of friction
                                                                     

   

SiO2

Porcelain

Steatite

Cordierite

Macor

90% Al2O3

95% Al2O3

100% Al2O3

85% Al2O3, ZrO2-hardened

Mg-PSZ

Ce-PSZ

Y-PSZ

Ca-FSZ

Y-FSZ

porous MgO

dense MgO

TiO2

Al2TiO5

AlN

Sialon

RBSN

SSN

HPSN

Si-SiC

SSiC

HPBC

HPBN

TiB2

Diamond

Hardmetal

Tool steel

Thermal properties     Thermal properties   Thermal properties   Thermal properties   Thermal properties   Thermal properties   Thermal properties   Thermal properties   Thermal properties   Thermal properties   Thermal properties   Thermal properties   Thermal properties   Thermal properties   Thermal properties   Thermal properties   Thermal properties Thermal properties
Max. use temperature in air, no load conditions   °C 1230±130 1110±80 1190±180 1270±190 900±50 1500 1610±80 1710±80 1600±100 870±230 1000±160 1090±240 2280±60 2230±150 2350±50 2300±80 1300±300 1420±160 1240±220 1250±150 1410±180 1210±130 1280±180 1370±25 1610±330 680±130 920±220 800   840±140 530±230 Max. use temperature in air, no load conditions
Max. use temperature in vacuum, no load conditions 8 °C         1050±50   1600 1760±40   1050±150 2200 1200     1600 1600   1500 1800   1670±190 1480±30 1380±80 1400 2110±400 1880±110 2270±470 2000     400 Max. use temperature in vacuum, no load conditions
Specific heat at 20°C   J/g K 0,80±0,05 0,88±0,06 0,87±0,05 0,86±0,09 0,79 0,92 0,83±0,06 0,90±0,09 0,79±0,05 0,47±0,05   0,56±0,11 0,4 0,55±0,13   1,0±0,1 0,69 0,76±0,08 0,82±0,02 0,65±0,04 0,72±0,11 0,73±0,10 0,67±0,10 0,90±0,11 0,66±0,02 1,2±0,3 0,83±0,04 0,63   0,19 0,49 Specific heat at 20°C
Thermal conductivity, 20°C   W/m K 1,6±0,3 2,7±0,6 3,8±1,5 2,5±0,6 1,5±0,1 16,9±0,2 23,0±1,9 29±4 22±2 2,5±0,5 1,9±0,1 2,5±0,8 2,3±0,3 2,2±0,2 9±5 48±7 4±1 1,9±0,9 151±36 24±8 13±2 25±8 27±9 136±41 105±33 30±10 33±13 99±80 1300±700 79±22 39±12 Thermal conductivity, 20°C
Thermal conductivity, 1000°C     3,1±1,9         5 5,9±0,1 7,5±1,5   2,2±0,2   2,0±0,5 2 2   7±1 3,3 1,1   7,5±2,5 10±1 15±2 18±1 41±9 37±8 16±2 23±7     90±10   Thermal conductivity, 1000°C
Thermal expansion, 20-1000°C   10-6 K-1 0,58±0,08 6,4±1,1 8,5±1,4 2,4±1,0 12,7±0,4 8,2±0,1 8,1±0,2 8,3±0,5 8,2±0,2 9,8±0,6 9,5±1,5 9,8±0,9 10,7±0,3 10,7±0,8 14±1 13±1 9,0±0,7 1,2±0,6 5,3±0,4 3,3±0,3 3,0±0,2 3,3±0,2 3,3±0,3 4,6±0,5 4,5±0,6 5,2±0,5 2,4±1,5 7,9±0,3   6,0±1,0 12,4±2,0 Thermal expansion, 20-1000°C
Max. thermal shock 9 °C 1200 160±60 190 480±130   250 210±60 180±20 200±30 360±80   260±60   110 500 40   800±200   630±210 470±100 680±150 670±120 220±120 350±40 130±30 >600     400   Max. thermal shock

 

                                                                 

 

   

SiO2

Porcelain

Steatite

Cordierite

Macor

90% Al2O3

95% Al2O3

100% Al2O3

85% Al2O3, ZrO2-hardened

Mg-PSZ

Ce-PSZ

Y-PSZ

Ca-FSZ

Y-FSZ

porous MgO

dense MgO

TiO2

Al2TiO5

AlN

Sialon

RBSN

SSN

HPSN

Si-SiC

SSiC

HPBC

HPBN

TiB2

Diamond

Hardmetal

Tool steel

Electrical properties     Electrical properties   Electrical properties   Electrical properties   Electrical properties   Electrical properties   Electrical properties   Electrical properties   Electrical properties   Electrical properties   Electrical properties   Electrical properties   Electrical properties   Electrical properties   Electrical properties   Electrical properties   Electrical properties Electrical properties
Dielectric strength, sample thickness 1-5 mm 10 kV/mm 20±5 24±7 20±7 10±4 40 19±4 19±4 19±5               10±1 8 5 23±3     16±4 18±2       40±7         Dielectric strength, sample thickness 1-5 mm
Dielectric constant (=relative permittivity), 1 MHz, 20°C   e 4,3±0,7 6,1±0,3 5,9±0,8 5,1±0,7 6 8,7±0,2 9,4±0,3 9,6±0,8             11±2 8,9±0,7 82±45   8,6±0,4   5 7,9±0,1 8,2±1,6       4,4±0,2   5,7     Dielectric constant (=relative permittivity), 1 MHz, 20°C
Loss tangent (=dielectric dissipation factor), tand, 1MHz, 20°C 11 x 10-4 2±1 51±29 16±11 39±26 47 4,0±0,8 2,7±1,3 0,50±0,35               7±4 10±8   1   90 6±4 6±3       6,7±3,3   2     Loss tangent (=dielectric dissipation factor), tand, 1MHz, 20°C
Dielectric loss index (=loss factor), er.tand, 1MHz, 20°C 11 x 10-3 0,92±0,4 30±13 11±8 19±11 28 3,5±0,6 2,5±1 1,6±1,4               6±4 82±69   0,9   45 5±3 5±2       3,1±1,2   1,1     Dielectric loss index (=loss factor), er.tand, 1MHz, 20°C
Resistivity, 20°C, log10   Ohm·cm 15±4 12±1 13±1 11,5±0,5 17 14 14,0±0,9 14,0±0,7   10,5±0,5 9 9,6±1,4 10 15   14 8±4 11±2 13±1 11,5±0,5 12±2 12±2 13±2 1,3±1,8 3,3±1,6 -0,85±0,15 14±1 -4,4±1,5 7,3 -4,5±0,2 -4,8 Resistivity, 20°C, log10
Resistivity, 500°C, log10   Ohm·cm   4±1 6,5±0,5 >5 6,1 8,7±0,3 8,6±1,1 10,4±0,6   4,6±0,5   3,0±0,8 3 2,6 9       8,7     12                 -4,2 Resistivity, 500°C, log10
Resistivity, 1000°C; log10   Ohm·cm 4   5     5,9 5,3±0,9 6,6±0,4   2,6±0,5   2,2±0,8 1,7 0,5 6±2 7       7 7,5±0,5 7 7 0,05 0,2   9       -3,9 Resistivity, 1000°C; log10
                                                                     

   

SiO2

Porcelain

Steatite

Cordierite

Macor

90% Al2O3

95% Al2O3

100% Al2O3

85% Al2O3, ZrO2-hardened

Mg-PSZ

Ce-PSZ

Y-PSZ

Ca-FSZ

Y-FSZ

porous MgO

dense MgO

TiO2

Al2TiO5

AlN

Sialon

RBSN

SSN

HPSN

Si-SiC

SSiC

HPBC

HPBN

TiB2

Diamond

Hardmetal

Tool steel

Chemical resistance 12   Chemical resistance   Chemical resistance   Chemical resistance   Chemical resistance   Chemical resistance   Chemical resistance   Chemical resistance  

Chemical resistance

 

Chemical resistance

 

Chemical resistance

 

Chemical resistance

 

Chemical resistance

  Chemical resistance   Chemical resistance   Chemical resistance   Chemical resistance Chemical resistance
NaOH 30-50%, 105°C   mg/cm².yr         >1.000         0,025   0,4±0,2    

 

 

 

 

 

 

 

0,5±0,1

 

8±2 0,32±0,29             NaOH 30-50%, 105°C
HCl 36%, 110°C   mg/cm².yr         >10.000         0,27±0,17   0,4±0,2    

 

 

 

 

 

 

 

7±1

 

0,32±0,28 0,32±0,28             HCl 36%, 110°C
HNO3 65%, 108°C   mg/cm².yr                   0,045±0,025   0,4±0,2    

 

 

 

 

 

 

<0.01

5±1

 

0,33±0,27 0,32±0,28             HNO3 65%, 108°C
H2SO4 20%, 25°C   mg/cm².yr           0,18 0,1 0,06   0,12±0,04        

 

 

 

 

0,24

 

 

 

 

                H2SO4 20%, 25°C
H2SO4 95% 20°C   mg/cm².yr           0,03           0,04    

 

 

 

 

0,04

 

 

0,01

 

0,017

0,007

        1,1±0,2   H2SO4 95% 20°C
H2SO4 95%, 100°C   mg/cm².yr           0,5           <0,1    

 

 

 

 

 

 

 

<0,1

 

0,13±0,03

0,055±0,045

        11±1   H2SO4 95%, 100°C
                                 

 

 

 

 

 

 

 

 

 

 

 

             

   

SiO2

Porcelain

Steatite

Cordierite

Macor

90% Al2O3

95% Al2O3

100% Al2O3

85% Al2O3, ZrO2-hardened

Mg-PSZ

Ce-PSZ

Y-PSZ

Ca-FSZ

Y-FSZ

porous MgO

dense MgO

TiO2

Al2TiO5

AlN

Sialon

RBSN

SSN

HPSN

Si-SiC

SSiC

HPBC

HPBN

TiB2

Diamond

Hardmetal

Tool steel

Relative price level for plate 100x50x10 mm 13   Relative price   Relative price   Relative price   Relative price   Relative price   Relative price   Relative price  

Relative price

 

Relative price

 

Relative price

 

Relative price

 

Relative price

 

Relative price

 

Relative price

  Relative price   Relative price Relative price level for plate 100x50x10 mm
Un-machined, as-sintered   % 25-50 10-80 10-90 20-100 150-200 80 90 100 130-150 210-310   290-370    

200

 

 

 

270-380

120-150

120-180

200-320

240-260

120-130

140

 

300-400

360-520   230-370 5-20 Un-machined, as-sintered
Machined all over, polished one face   % 60-140       200-250 200 230 200-300 300-330 530-750   550-680    

 

 

 

 

 

 

 

360-600

720-990

420-450

420-570

 

350-450

 

  650-820 10-40 Machined all over, polished one face
                                 

 

 

 

 

 

 

 

 

 

 

 

 

 

         
(up)        

 

(up)       (up)         (up)  

 

 

 

 

 

 

 

 

 

(up)

 

 

 

        (up)

Remark
This compilation is based upon a large selection of product brochures, data sheets, professional literature, etc. The information in the tables is given as mean value ± standard deviation whenever this has been possible, based on the available material. This information undergoes continuous revision and should be used for guidance only.

Note 1:
Density values at upper/lower limits usually offer similar positions for other table data.

Note 2:
Closed porosity is most often between 0 or 2%, sometimes even 5% by volume. Normally, only hot-pressed materials are fully dense.

Note 3:
Hardness values show a large spread between different manufacturers. The data are probably correct, even though the large spread makes comparisons difficult between different materials. Knoop 100g values are approx. 20-40% higher than the 1000g value; Vickers 50g values are approx. 5-15% higher than when using a 500g test load. Temperature: 20°C.

Note 4:
Available data often do not indicate the load method adopted. A 3-point load may result in 30% higher values than a 4-point load, but also a wider spread in the strength data (which is seen as a lower Weibull modulus). For load tests with a widely distributed load (e.g. in case of bending), the lower values should act as guidance, while for local loads, the higher strength values could be used. 

Note 5:
The Weibull modulus is a statistical measurement of the properties spread, often used with bend strength (MOR) values. A high value indicates uniform measurement data and, as such, better reliability for strength calculations. The modulus is primarily affected by the material properties, such as a uniform microstructure, etc.

Note 6:
Poisson’s ratio gives the relationship between the modulus of elasticity and that of shearing (E and G, respectively). The ratio equals 0.5 for ideal elastic solids where its volume remains constant under elongation.

Note 7:
The friction coefficient is usually based on unlubricated materials in contact with identical material in air at low relative contact speed. Surface finish: lapped or polished to Ra<= 0,1 mm.

Note 8:
In reducing atmosphere, lower values often apply, e.g. for TiO2 and MgO. Al2O3 is a highly stable oxide and withstands reducing conditions well.

Note 9:
The value is highly dependent on the size and shape of the product. Generally, ceramics withstand "up-shocks", at increasing temperature, better than cooling.

Note 10:
The value usually increases with increased material thickness "t". Temperature: 20°C.

Note 11:
Commercial data often confuse tand and er.tand, which we have tried to compensate for in this compilation. T=20°C.

Note 12:
Values are based on weight loss per year (365 days). This corrosion often attac the binder phase first, possibly leading to severe weakening of the ceramic, at even a minute weight loss.

Note 13:
Index 100 corresponds to dense sintered, unmachined 99.6% pure Al2O3, exclusive of tooling expenses, etc. Production lots: 100 - 10,000 pcs. Easiest way to find out current prices, applicable to your requirements, is to contact us.

 

Macor: ® Corning Glass

© KERANOVA AB 1995-2006. Tables revision: January 2006